Aims and Scope

Open Chemistry Journal is an open access online journal which publishes review/mini-review articles, letters, short communications and guest edited thematic issues on novel research in the field of chemistry.

  • Physical Chemistry
  • Quantum Chemistry
  • Thermochemistry
  • Bioorganic Chemistry
  • Inorganic Chemistry
  • Electrochemistry
  • Solid-State Chemistry
  • Biochemistry
  • Biophysical Chemistry
  • Bioinorganic Chemistry
  • Environmental Chemistry
  • Spectroscopy
  • Organic Chemistry
  • Medicinal Chemistry
  • Cluster Chemistry
  • Green Chemistry
  • Stereochemistry
  • Neurochemistry Physical
  • Organic Chemistry
  • Materials Chemistry
  • Theoretical Chemistry
  • Immunochemistry
  • Synthetic Chemistry
  • Polymer Chemistry
  • Analytical Chemistry
  • Atmospheric Chemistry
  • Mathematical Chemistry
  • Organometallic Chemistry
  • Immunohistochemistry

Open Chemistry Journal,a rapid peer reviewed journal, is an important and reliable source of current information on developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.

Recent Articles

Efficient Removal of Methyl Orange from Wastewater by Polymeric Chitosan-iso-vanillin

Eman A. Alabbad


Water pollution is a serious issue in several countries. In addition, because of limited water resources, the recycling of wastewater is crucial. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution.


In this study, the removal of Methyl Orange (MO) dye from wastewater using a chitosan-iso-vanillin polymer was evaluated. The removal of MO from an aqueous solution was studied in a batch system, using the modified chitosan polymer.


The results indicate that the removal of MO by the modified chitosan was affected by the solution pH, sorbent dosage, initial MO concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Freundlich isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. Thus, the removal of MO was controlled via chemisorption, and the removal rate was 97.9% after 3 h at an initial MO concentration of 100 ppm and a sorbent dose of 0.05 g. The adsorption behavior of the modified chitosan for the removal of MO was well-described using the pseudo-second-order kinetic model. Intraparticle diffusion analysis was also conducted, and the thermodynamic properties, including entropy (∆S), enthalpy (∆H), and free energy (∆G), were determined.


The pH, initial MO concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of MO by chitosan-iso-vanillin.

July 03, 2020

Editor's Choice

Synthesis, Characterization of Mixed Cu(II) Pyridyl Tetrazoles and 1,10-Phenanthroline Complexes - DFT and Biological Activity

Ch. Himasekar, Sheik Mustafa, Manabolu S. Babu


Mixed ligand copper complexes with 1,10-phenanthroline show good chemical nuclease activity and anticancer activity. Recently, tetrazole derivatives are also promising candidates for anticancer activity. Hence, it is significant to study the DNA binding and anticancer activity of two active N-donor ligands and their copper complexes.


The main objective of this study was to investigate the regioisomeric mixed ligand copper complexes response with calf thymus DNA binding and anti-toxic activity against MCF-7 cell line.


The DNA binding interactions of complexes 1-4 with calf thymus DNA (CT-DNA) were monitored by UV/VIS spectroscopy. The absorption spectra of the Cu complexes are compared with and without CT-DNA at 400-450 nm. The cell proliferation was measured by using the standard 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium- 5-carboxanilide (XTT) assay with four different concentrations of the compounds (5, 10, 50, and 100 mm) and cisplatin (as a positive control) was tested in triplicate for 48 h. The results obtained by the XTTassay are expressed as the average standard deviation of two experiments. The IC50 values of the complexes exhibited differential and dose-dependent inhibitory activities on the growth of MCF-7 cancer cells.


Based on the elemental analysis, molar conductance, magnetic moments, mass, electronic, ESR and IR spectral data, the copper is coordinated by N-atoms of 1,10- phenanthroline and pyridyl tetrazole with octahedral structure. DFT calculations of HOMO and LUMO studies showed that electron density is localized on pyridyl tetrazole ring and phenanthroline ring. The calculated DNA binding constant (Kb) values of 1-4 complexes are in the range 4.2 - 7.6 x104M-1 (Table 4) with similar binding affinity to reported copper tetrazole derivative complexes. The 1-4 complexes with CT DNA interaction are through planar phenanthroline and pyridyl tetrazole ring likely via π-stacking interactions. The IC50 values of complexes show excellent activity with 24(± 0.5); 18(± 0.5); 20(±0.5); (±0.5) and 38 (±0.8) for 1, 2, 3, 4 and cis platin complexes, respectively. After 72 h of the treatment of 1 on MCF-7 cell, IC50 values hinder the cell growth upto 24(± 0.5) µg/ml at 5 µM concentration range (Fig. 5). It is apparent from IC50 values that the order inhibition is 1 > 3 >2 > 4.


Experimental results are highly encouraging to explore the mixed ligand regio isomeric copper complexes which have shown the parallel result with Cisplatin. By proper structural modification of pyridyl tetrazole ligand, substituent better anticancer agents can be prepared.

January 28, 2019

Quick Links

Indexing Agencies